MATHEMATICAL ANALYSIS OF RATES OF RETURN UNDER CERTAINTY* \dagger

DANIEL TEICHROEW, ${ }^{1}$ ALEXANDER A. ROBICHEK, ${ }^{2}$ and MICHAEL MONTALBANO ${ }^{3}$

Abstract

The purpose of this paper is to prove certain properties of the present and future values of a sequence of cash flows which have applications in the theory of capital budgeting. This is done in Theorems III, IV and V. As an introduction, certain previously available results about the present value function are stated and proved as Theorems I and II. A summary of the relevance of these results in capital budgeting is given in the Summary.

Introduction

We define a firm to be an entity which acquires capital in order to invest it. A project is any possible event or commitment which would change the firm's amount of capital. A project may be completely described by a sequence of $n+1$ real numbers, assuming that increase or decrease in the amount of capital occurs only at the end of each period during the life of the project, i.e., by a_{0}, a_{1}, \cdots, a_{n}. The a_{j} may be interpreted as the net flow of capital to the firm, i.e., if a_{j} is negative the flow of capital is from the firm, if a_{j} is positive the flow is to the firm. Without loss of generality, it can be assumed that a_{0} and a_{n} are nonzero. Furthermore, it is assumed that not all the a_{j} 's have the same sign.

Let i denote the interest rate, w the compounding rate $[w=1+i]$ and v the discount rate $\left[v=(1+i)^{-1}\right]$. The discounted cash flow method of evaluating projects is based on the present value function [1]

$$
\begin{equation*}
P(i)=a_{0}+a_{1} v+a_{2} v^{2}+\cdots+a_{n} v^{n} \tag{1}
\end{equation*}
$$

or, equivalently, on the future value function

$$
\begin{equation*}
S(i)=a_{0} w^{n}+a_{1} w^{n-1}+\cdots+a_{n} \tag{2}
\end{equation*}
$$

For most purposes, both functions are equally appropriate since

$$
\begin{equation*}
S(i)=w^{n} P(i) \text { if }-1<i<\infty \tag{3}
\end{equation*}
$$

The values of these functions for certain values ${ }^{4}$ of i are

* Received December 1963.
\dagger Supported in part by a research grant from the International Business Machines Corporation and in part by a grant from the Ford Foundation for Research in the Application of Quantitative Techniques to Business Problems.
${ }^{1}$ Case Institute of Technology, Cleveland, Ohio.
${ }^{2}$ Stanford University, Stanford, California.
${ }^{3}$ International Business Machines Corporation and Industrial Research Fellow (19631964), Graduate School of Business, Stanford University.
" Negative interest rates may be interpreted as "loss of capital." As i decreases to -1 , the future value $S(i)$ tends to a_{n}; all the other cash flows are multiplied by numbers which tend to zero.

i	P	S
-1	$\pm \infty$	a_{n}
0	$\sum_{i} a_{j}$	$\sum_{i \infty} a_{j}$
∞	a_{0}	$\pm \infty$

where $\pm \infty$ denotes a functional value which increases without bound.
The balance of a project at the end of period j at interest i, is defined as

$$
S_{j}(i)=a_{0} w^{j}+a_{1} w^{j-1}+\cdots+a_{j-1} w+a_{j}
$$

The balance may be computed recursively by:

$$
\begin{array}{ll}
S_{0}(i) & =a_{0} \\
S_{j}(i) & =w S_{j-1}(i)+a_{2} \tag{4}
\end{array} \quad j=1, \cdots, n
$$

We define a project to be a:
pure investment project at interest i if $S_{j} \leqq 0$ for $j=0,1, \cdots n-1$
pure financing project at interest rate i if $S_{j} \geqq 0$ for $j=0,1, \cdots n-1$ mixed project at interest rate i if the nonzero S_{j} for $j=0,1, \cdots n-1$ are not all of one sign.
In practical problems the interest rate for pure investment projects is usually not equal to the interest rate in pure financing projects. Therefore, let

$$
\begin{aligned}
& r=\text { interest rate in investment projects and } y=1+r \\
& k=\text { interest rate in financing projects and } x=1+k
\end{aligned}
$$

Here y and x are the compounding factors corresponding to interest rates r and k, respectively.

The balance of a mixed project [2], at the end of period j is a function of x and y defined by the recursive relations: ${ }^{5}$

$$
\begin{align*}
F_{0}(x, y) & =a_{0} \\
F_{j}(x, y) & =y F_{j-1}(x, y)+a_{j} \\
& \text { if } \quad F_{j-1}(x, y)<0 \tag{5}\\
& =x F_{j-1}(x, y)+a_{j} \\
& \text { if } \quad F_{j-1}(x, y)>0 \\
& =a_{j}
\end{align*} \quad \text { if } \quad F_{j-1}(x, y)=0.4 \quad j=1,2, \cdots, n
$$

The function $F(x, y)$ is defined to be $F_{n}(x, y)$ for $x>0, y>0$.
Theorems I and II state results for the case $k=r=i$.
Definition I: A simple project is one in which the signs of all the nonzero a_{j} 's for $j=1,2, \cdots n$ are different from that of a_{0}.
Theorem IA. The present value function of a simple project in which a_{0} is negative is a strictly convex, strictly decreasing function for $i>-1$.
${ }^{5}$ The definition of $F_{j}(x, y)$ for the case where $F_{j-1}(x, y)=0$ is arbitrary; it could also be defined by using $F_{j-1}(x, y) \leqq 0$ in the first line of (2) or $F_{j-1}(x, y) \geqq 0$ in the second line.

Proof: $P(i)$ is a polynomial of degree n in v and hence is continuous as a function of i.
From (1)

$$
\begin{aligned}
& d P(i) / d i=-a_{1} v^{2}-2 a_{2} v^{3}-\cdots-n a_{n} v^{n+1} \\
& \quad<0 \text { since } a_{j} \geqq 0 \text { for } j=1,2, \cdots n-1 \text { and } a_{n}>0, \text { by assumption, } \\
& \quad \text { and } v>0 \\
& d^{2} P(i) / d i^{2}=2 a_{1} v^{3}+(3)(2) a_{2} v^{4}+\cdots+(n+1)(n) a_{n} v^{n+2} \\
& \quad>0
\end{aligned}
$$

Since the first derivative is negative the function is strictly decreasing and since the second derivative is positive the function is strictly convex.

Corollary IB: The present value function for a simple project in which a_{0} is positive is a strictly concave, strictly increasing function for $i>-1$.
Corollary IC: The equation $P(i)=0$ for a simple project has a single unique solution for $i>-1$. The solution is negative if $\sum a_{j}$ has the same sign as a_{0}, positive if $\sum a_{j}$ has a sign different from a_{0}, and zero if $\sum a_{j}$ is zero ($j=0,1$, $2, \cdots n$).

Proof: If a_{0} is negative, a_{n} must be positive since the project is simple. The

$$
\lim _{i \rightarrow-1} P(i)
$$

is dominated by the term $a_{n} v^{n}$, hence is positive. Since $P(i)$ is continuous and is positive for i close to -1 and negative for large i, there must be a root >-1. However, $P(0)=\sum a_{j}$ and $\lim _{i \rightarrow \infty} P(i)=a_{0}<0$. Hence if $\sum a_{j}$ is positive the root is greater than zero, and if $\sum a_{j}$ is negative the root is less than zero. The proof for positive a_{0} is analogous.

Theorem IIA. ${ }^{6}$ The present value function of a project which is a pure investment for all $i>-1$ is a strictly decreasing function for $i>-1$.

Proof: The function is a polynomial in v, hence is a continuous function of i. The proof is by induction. From (4)

$$
\begin{aligned}
d S_{0}(i) / d i=0 ; \quad d S_{1} / d i=(d / d i)\left\{(1+i) S_{0}(i)\right. & \left.+a_{1}\right\} \\
& =S_{0}(i)+(1+i) d S_{0}(i) / d i
\end{aligned}
$$

which is negative, since, by assumption, $S_{0}(i)$ is negative and $d S_{0}(i) / d i$ is zero.

Now suppose that $d S_{j} / d i<0$, then

$$
d S_{j+1} / d i=S_{j}(i)+(1+i) d S_{j}(i) / d i<0
$$

since the first term is either zero or negative and the second term is negative.
Consequently, by induction, $d S_{n}(i) / d i<0$ and $S_{n}(i)$ is strictly monotonically decreasing. By (3) $P(i)$ is strictly monotonically decreasing.

[^0]Corollary IIB. The present value function of a pure financing project is a strictly increasing function for $i>-1$.

Corollary IIC, [3]. The equation $P(i)=0$ has a single unique solution for $i>-1$ for pure investment and pure financing projects. The solution is negative if $\sum a_{j}$ has the same sign as a_{0}, positive if $\sum a_{j}$ has a different sign from a_{0} and zero if $\sum a_{j}$ is zero.

Proof: The proof is analogous to that of Corollary IC.
Corollary IID. If a project is a pure investment project for some interest rate $i_{\min }>-1$ then $P(i)$ is a strictly decreasing function of i for $i>i_{\min }$.

Proof: The proof is the same as for Theorem IIA.
Corollary IIE.
Any project in which a_{0} is negative is a pure investment project for some $i_{\text {min }}$.
Theorems III and IV state results for a present value as a function of two interest rates x and y (or k and r).

Theorem III. The future value function $F(x, y)$ of a mixed project, defined by (5), has the following properties for $0<x<\infty ; 0<y<\infty$.

1. $F(x, y)$ is a polynomial in x, y. The degree depends on (x, y).
2. (a) If $a_{0}<0$, there exists a $y_{\text {min }}$ such that $F(x, y)$ for $y>y_{\text {min }}$ is of zero degree in x.
The region $0<y<y_{\text {min }}, x>0$ is termed the mixed region
The region $y_{\min } \leqq y<\infty, x>0$ is termed the pure investment region
(b) If $a_{0}>0$, there exists an $x_{\text {min }}$ such that $F(x, y)$ for $x>x_{\text {min }}$ is of zero degree in y.
The region $y>0,0<x<x_{\min }$ is termed the mixed region
The region $y>0, x_{\min } \leqq x<\infty$ is termed the pure financing region
3. $F(x, y)$ is a continuous function of (x, y).
4. The partial derivatives $\partial F / \partial x, \partial F / \partial y$, exist at all points in the mixed region except for the points at which one or more project balances are zero.
Proof:
5. The function $F(x, y)$

Carrying out the recursions (5) for a given project produces a polynomial in x and y of the form

$$
F(x, y)=F_{n}(x, y)=a_{0} x^{\alpha_{0}} y^{\beta_{0}}+a_{1} x^{\alpha_{1}} y^{\beta_{1}}+\cdots a_{n-1} x^{\alpha_{n-1}} y^{\beta_{n-1}}+a_{n}
$$

The degrees of the polynomial in x and y at the point (x, y) are the exponents α_{0}, β_{0}. In the sequence of values $F_{0}, F_{1}, \cdots F_{n-1}$ calculated by the recursive process (5), α_{0} is the number of positive values and β_{0} is the number of negative values. Similarly, α_{1} is the number of positive values, and β_{1} the number of negative values, in the sequence $F_{1}, F_{2}, \cdots F_{n-1} ; \alpha_{2}$ and β_{2} are numbers of the same kind for the sequence $F_{2}, F_{3}, \cdots F_{n-1}$, and so on. If F_{n-1} is positive, $\alpha_{n-1}=1$ and $\beta_{n-1}=0$; if it is negative, $\alpha_{n-1}=0$ and $\beta_{n-1}=1$.
Thus, at any point $(x, y), F(x, y)$ is represented by a polynomial in x and y whose coefficients are the numbers $a_{0} \cdots a_{n}$ and whose exponents are determined by the signs of the project balances $F_{0}, F_{1}, \cdots F_{n-1}$. At any point (x, y)
where none of the project balances is zero, the following equations hold:

$$
\alpha_{j}+\beta_{j}=n-j \quad j=0,1, \cdots n-1
$$

At a point (x, y), where one or more of the project balances is zero, $a_{0}+\beta_{0}$ will be less than n by the number of zero project balances, and the other sums, $\alpha_{i}+\beta_{i}$ will similarly be decreased by the number of zeros in the corresponding subsequences $F_{i}, F_{i+1}, \cdots F_{n-1}$.
From the continuity of polynomials, it follows that any point at which

$$
\alpha_{0}+\beta_{0}=n
$$

is surrounded by a neighborhood of points at which $\alpha_{0}+\beta_{0}=n$ and we can asssert that

Any point (x_{0}, y_{0}), at which none of the $F_{0}, F_{1}, \cdots F_{n-1}$ is zero, is surrounded by a neighborhood of points throughout which $F(x, y)$ is represented by the same polynomial as it is at (x_{0}, y_{0}).
2. Pure and Mixed Regions.

If a_{0} is positive, it is evident that, for large enough values of x, all of the project balances will be positive. There exists, therefore, a smallest value of x, say $x_{\text {min }}$, which makes at least one of the partial evaluations zero and all the others positive. For values of x greater than or equal to $x_{\text {min }}, F(x, y)$ is a function of x only. Typical contour lines of the function $F(x, y)$ for $a_{0}>0$ are shown in Figure 1(a).
For $x \geqq x_{\min }$ the contour lines of the function $F(x, y)$ are parallel to the y axis.
Similarly, if a_{0} is negative, there exists a smallest value of y, say $y_{\min }$, such that, for values of y greater than or equal to $y_{\min }, F(x, y)$ is a function of y

FIGURE I(0)
CONTOUR LINES OF $F(x, y)=c$
$c_{0}<c_{1}<c_{2}<c_{3}<c_{4}$

FIGURE I (b)
CONTOUR LINES OF $F(x, y)=c$
$c_{0}<c_{1}<c_{2}<c_{3}<c_{4}$
only. Typical contour lines are shown in Figure 1(b). For $y \geqq y_{\text {min }}$ the contour lines are straight lines parallel to the x axis.

The region in the positive x, y quadrant in which $F(x, y)$ is a function of x and y is defined to be the mixed region.

3. Continuity of $F(x, y)$

The continuity of $F(x, y)$, computed by the recursion relation (5), can be established by induction. $F_{0}(x, y)$ is a continuous (in fact, constant) function of x and y. If $F_{j-1}(x, y)$ is a continuous function of x and y then clearly $F_{j}(x, y)$ is also a continuous function of x and y at all except possibly at points at which $F_{j-1}(x, y)=0$. However, the limit at any such point through any sequence of points is a_{j}, hence the function is also continuous at these points. Therefore F_{j} is continuous for all points if F_{j-1} is, and by induction $F_{n}(x, y)=F(x, y)$ is continuous.

4. Partial Derivatives

By assumption there is at least one $F_{j}(x, y)$ which is positive for (x, y) in the mixed region; let F_{m} be the first one. Then $F_{0}, F_{1}, \cdots F_{m-1}$ are negative and do not depend on x. Therefore

$$
\partial F_{0} / \partial x=\partial F_{1} / \partial x=\cdots=\partial F_{m} / \partial x=0
$$

However

$$
\begin{aligned}
\partial F_{m+1} / \partial x & =(\partial / \partial x)\left\{x F_{m}(x, y)+a_{j}\right\} \\
& =F_{m}(x, y)+x\left(\partial F_{m}(x, y) / \partial x\right)
\end{aligned}
$$

Hence

$$
\partial F_{m+1} / \partial x
$$

is positive since it is the sum of a positive and zero term.
Now suppose

$$
\partial F_{j} / \partial x>0 \quad \text { and consider } \quad \partial F_{j+1} / \partial_{x} . \quad j \geqq m+1
$$

From (5)

$$
\begin{aligned}
\partial F_{j+1} / \partial x & =y\left(\partial F_{j} / \partial x\right)\left(>0 \text { because } \partial F_{j} / \partial x>0 \text { by assumption }\right) \\
& \text { if } F_{j}<0 \\
& =F_{j}+x\left(\partial F_{j} / \partial x\right)(>0 \text { since both terms are }>0)
\end{aligned} \text { if } F_{j}>0 \text {) } \begin{aligned}
\partial F_{j+1} / \partial x & \text { does not exist }
\end{aligned}
$$

The partial derivative $\partial F_{j+1} / \partial x$ is positive if it exists and consequently, if the succeeding partial derivatives exist, $\partial F_{n} / \partial x=\partial F(x, y) / \partial x$ is positive.

An exactly analogous proof shows that if all the partial derivatives $\partial F_{j} / \partial y$ exist, then $\partial F_{n} / \partial x=\partial F(x, y) / \partial y$ exists and is negative. Neither partial derivative $\partial F / \partial x, \partial F / \partial y$ will exist at a point x, y at which one of the F_{j} is zero.

At the points where the partial derivatives do not exist, the right-hand and
left-hand derivatives are not equal, because the degree of the polynomial changes at points where an $\boldsymbol{F}_{\boldsymbol{j}}=0$. However, both derivatives are of the same sign and any line $x=c$ or $y=c$, i.e., any line parallel to either axis, contains only a finite number of such points.

Theorem IV. The function $y=y(x)$, implicitly defined in the mixed region by

$$
F(x, y)=0
$$

is continuous and strictly increasing for

$$
x_{L}<x<x_{R}
$$

where x_{L} and x_{R} depend on a_{0} and a_{n} as follows:

	$a_{0}<0$	$a_{0}>0$	
		$F\left(x_{\text {min }}, y\right)>0$	$F\left(x_{\text {min }}, y\right)<0$
$a_{n}<0$	$x_{L}>0 ; x_{R}=\infty$	$x_{L}>0 ; x_{R}=x_{\text {min }}$	y is not a function of x
$a_{n}>0$	$x_{L}=0 ; x_{R}=\infty$	$x_{L}=0 ; x_{R}=x_{\text {min }}$	not possible

Proof: The continuity of $y(x)$ follows directly from the continuity of $F(x, y)$ given above. Furthermore, if a function $F(x, y)$ is continuous and possesses partial derivatives in a region, the derivative $d y / d x$ of the function $y(x)$ defined implicitly by $F(x, y)=0$ is given by

$$
\frac{d y}{d x}=-\frac{\partial F}{\partial x} / \frac{\partial F}{\partial y}
$$

From Theorem III it follows that $d y / d x$ exists and is positive for all x, y in the mixed region except at points for which one or more of the project balances are zero. Hence the function $y(x)$ is strictly increasing in some interval.
The x-interval over which $y(x)$ is defined depends on a_{0} and a_{n}, because $F(0,0)$, the value at the origin, is a_{n} and the sign of a_{0} determines whether $F(x, y)$ has a pure financing or a pure investing region.

If a_{0} is negative then the project becomes a pure investment project for $y>$ $y_{\min }$ (Fig. 1b). Hence x_{L} will be zero if a_{n} is positive and will be greater than zero if a_{n} is negative since $F(x, 0)$ is strictly increasing in x and x_{L} is the root of $F(x, 0)=0$. Since, in a mixed region, $d y / d x>0, y(x)$ is asymptotic to the horizontal straight line $y=F\left(x, y_{\min }\right)$ as x becomes large.
If a_{0} is positive, then the project becomes a pure financing project for $x>x_{\text {min }}$ (Fig. 1a). If $F\left(x_{\text {min }}, y\right)$ is zero or negative, $F(x, y)=0$ is a straight line parallel to the y-axis and y is not defined as a function of x. If $F\left(x_{\min }, y\right)$ is positive and a_{n} is negative, then x_{L} is between zero and $x_{\min }$. If a_{n} is positive, x_{L} is zero. The function $y(x)$ is asymptotic to the vertical straight line $x=F\left(x_{\min }, y\right)$ as x approaches $x_{\text {min }}$.

Corollary IVA. Similar properties hold for the function $y(x ; c)$ defined implicitly by $F(x, y)=c$.

Proof: $F(x, y)=c$ may be written in the form

$$
F(x, y)-c=0
$$

The function to the left of the equal sign differs from $F(x, y)$ only in the coeffcient a_{n}. The functions $y(x ; c)$ are asymptotic to $y=F\left(x, y_{\text {min }}\right)$ if $a_{0}<0$ and $F\left(x, y_{\text {min }}\right)<c$ and are asymptotic to $x=F\left(x_{\min }, y\right)$ if $a_{0}>0$ and $F\left(x_{\text {min }}, y\right)>c$.
Corollary IVB. Results analogous to those in Theorem IV and Corollary IVA hold for $x=x(y)$ defined implicitly by

$$
F(x, y)=0
$$

Theorem V. For any project $P(i)$ defined by (1) and $y(x)$ defined by Theorem IV:

$$
\begin{array}{lll}
P(i)>0 & \text { if } & y(x)>x \\
P(i)=0 & \text { if } & y(x)=x \\
P(i)<0 & \text { if } & y(x)<x
\end{array}
$$

Proof: Let

$$
x=1+i
$$

Then the Present Value $P(i)$ is given as a function of x by

$$
P(x)=a_{0}+a_{1} / x+a_{2} / x^{2}+\cdots a_{n} / x^{n}
$$

Multiplying both sides by x^{n} gives

$$
x^{n} P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots a_{n}=F(x, x)
$$

$F(x, x)$ is merely the function $F(x, y)$ evaluated for points along the line $y=$ x. For positive x, it will obviously be negative where $P(x)$ is negative, zero where $P(x)$ is zero, and positive where $P(x)$ is positive.

Summary

There are two widely discussed methods for making decisions about the acceptance or rejection of projects on the basis of the discounted cash flows. The internal rate of return method accepts a project only if the solution of $P(i)=0$ (equation 1) is greater than some stated rate i_{0}. The present value method accepts the project only if $P\left(i_{0}\right)$ is positive. The internal rate of return method cannot be used if the equation $P(i)=0$ has more than one solution. The present value method can always be applied but in some projects $P(i)$ increases as i increases. This is contrary to intuition and the reason why it occurs is not readily apparent.
From the analysis in this paper it is now clear that the difficulties with both methods arise in the mixed region. If at compounding rates (x, y) a project
falls in the mixed region, then forcing it into the form of $P(i)$ in (1) is equivalent to considering only points on the line $x=y=1+i$. In the mixed region a project is sometimes an investment and sometimes a source of funds, and hence the analysis based on $P(i)$ is equivalent to assuming that the rate the firm imputes to the project when it is a source of funds is the same rate as the rate the project earns when there is an investment. Theorem IV states that for any project, the rate of return which a project can earn $(y-1)$ will increase as the rate $(x-1)$ imputed or credited to the project increases. Theorem V verifies that $P(i)$ is in fact equivalent to $F(x, y)$ for the special case where $x=y=1+i$.

A detailed examination of the implications of these results for capital budgeting theory is given in [4]. It is shown that increasing the present value of the firm requires the use of rules which may be stated as:

$$
\text { accept project if } y(u)>u \text { or } u>x(u)
$$

where $y(x)$ and $x(y)$ are the functions implicitly defined by $F(x, y)=0$ and $u=1+i_{0}$. Since i_{0} (often referred to as the cost of capital) is assumed given, mixed projects may be considered either as financing projects $[x(u)]$ or as investment projects $[y(u)]$. In either case the decision is the same. This rule is exactly equivalent to the discounted present value rule if the traditional present value function $P(i)$ is used.

Acknowledgement

We are indebted to our colleague, Yuji Ijiri, for stimulating discussions and many helpful suggestions, including the form of the proof of Theorem III.3.

References

1. Bierman, H. and Smidt, S., The Capital Budgeting Decision, New York: The Macmillan Company, 1960.
2. Discussion of more than one rate appears in a number of papers. For example:

Bernhard, R. H., "Discount Methods for Expenditure-A Clarification of Their Assumptions," Journal of Industrial Engineering, XII (1962), pp. 19-27.
However, the only explicit formulation of a present or future value function in terms of investment and financing rates known to us has been made by J. G. Laski in a personal communication (1961). The formulation uses a different discounting method than that in (5) ; a comparison of the two methods must await the publication of Laski's results.
3. The statement of this result for investment projects is given by

Soper, C. S., "The Marginal Efficiency of Capital-A Further Note," The Economic Journal, 1959, pp. 174-177.
Merrett, A. and Sykes, A., "Calculating the Rate of Return on Capital Projects," Journal of Industrial Economics, 1960, pp. 98-115.
Dugoid, A. M., personal communication, 1961.
4. Teichroew, D., Robichek, A. and Montalbano, M., "An Analysis of Criteria for Investment and Financing Decisions Under Certainty," Working Paper No. 4, Graduate School of Business, Stanford University, 1963.

Copyright 1965, by INFORMS, all rights reserved. Copyright of Management Science is the property of INFORMS: Institute for Operations Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: ${ }^{6}$ The conditions of Theorem IIA are met only when $a_{0}, a_{1}, \cdots a_{n-1}$ are all $\leqq 0$. The general case is that of Corollary IID.

