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MATHEMATICAL ANALYSIS OF RATES OF
RETURN UNDER CERTAINTY*t

DANIEL TEICHROEW,! ALEXANDER A. ROBICHEK,^ AND
MICHAEL MONTALBANO'

The purpose of this paper is to prove certain properties of the present and
future values of a sequence of cash flows which have applications in the theory
of capital budgeting. This is done in Theorems III, IV and V. As an introduc-
tion, certain previously available results about the present value function
are stated and proved as Theorems I and II. A summary of tbe relevance of
these results in capital budgeting is given in the Summary.

Introduction

We define a firm to be an entity which acquires capital in order to invest it. A
project is any possible event or commitment which would change the firm's
amount of capital. A project may be completely described by a sequence of
n + 1 real numbers, assuming that increase or decrease in the amount of capital
occurs only at the end of each period during the life of the project, i.e., by ao,
ai, •• • , an. The ay may be interpreted as the net flow of capital to the firm,
i.e., if aj is negative the flow of capital is from the firm, if a, is positive the fiow
is to the firm. Without loss of generality, it can be assumed that oo and On are
nonzero. Furthermore, it is assumed that not all the ay's have the same sign.

Let i denote the interest rate, w the compounding rate [w = 1 + i] and v
the discount rate [v = (1 + i)-% The discounted cash flow method of evaluat-
ing projects is based on the present value function [1]

(1) Pii) = ao -I- aiv + UiV^ + • • • + anv"

or, equivalently, on the future value function

(2) Sit) = cm" + aiw""' + . . . + « „

For most purposes, both functions are equally appropriate since

(3) Sii) = w"P(z) if - 1 < i < 00

The values of these functions for certain values* of i are
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i P S

— 1 ± =0 an

OO ao ±=0

where ± «> denotes a functional value which increases without bound.
The balance of a project at the end of period j at interest i, is defined as

Q / --I j _|_ ^ rt|i^^ _i_ _|_ ft 11) -L- n

The balance may be computed recursively by:

SM = ao
(4) . ,

Sjii) = wSj-iii) + a, J = 1, • • • ,n

We define a project to be a:

pure investment project at interest i if Ŝy ^ 0 for j = 0, 1, • • • w - 1
pure financing project at interest rate i if >Sy ̂  0 for j = 0, 1, • • • n - 1
mixed project at interest rate i if the nonzero S, ioT j = 0, 1, • • • n — 1 are

not all of one sign.

In practical problems the interest rate for pure investment projects is usually
not equal to the interest rate in pure financing projects. Therefore, let

r = interest rate in investment projects and y = 1 + r

k = interest rate in financing projects and x = 1 + k

Here y and x are the compounding factors corresponding to interest rates r and
k, respectively.

The balance of a mixed project [2], at the end of period j is a function of x
and y defined by the recursive relations:^

F-ix, y) = yFj^rix, y) + aj if Fy_i(a:, y) < 0\

^^^ = xFj-,ix, y) -I- ay if Fy_i(a;, y) > o\ j = 1 , 2 , ••• , n

= a, if Fj-,ix, y) = oJ

The function Fix, y) is defined to be F«(x, y) iorx>0,y> 0.
Theorems I and II state results for the case k = r = i.
Definition I: A simple project is one in which the signs of all the nonzero

ay's for J = 1,2, . • • n are different from that of ao.
Theorem I A. The present value function of a simple project in which ao is

negative is a strictly convex, strictly decreasing function for i > - 1 .

' The definition of Fj{x, y) for the case where f,-i(z, j/) = 0 is arbitrary; it could also
be defined by using Fi-,(x, y) <,Q\n the first line of (2) or F^^Ax, j/) g 0 in the second line.
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Proof: Pii) is a polynomial of degree n in y and hence is continuous as a func-
tion of i.

From (1)

dPii)/di = - aiv^

<0 since ay ̂  0 for y = 1, 2, ••• n - 1 and an > 0, by assumption,

and y > 0

d'P{,i)/di' = 2 a / + (3)(2)a2i.' + . . . + (n -f l)(n)a«t;"+'

>0

Since the first derivative is negative the function is strictly decreasing and since
the second derivative is positive the function is strictly convex.

Corollary IB: The present value function for a simple project in which ao
is positive is a strictly concave, strictly increasing function iov i > —1.

Corollary IC: The equation Pii) = 0 for a simple project has a single unique
solution for i> —1. The solution is negative if X) ay has the same sign as ao,
positive if 22 ay has a sign different from ao, and zero if XI ay is zero 0 = 0 1
2, ••• n ) .

Proof: If ao is negative, a™ must be positive since the project is simple. The

Iimi.,_i Pii)

is dominated by the term anv"", hence is positive. Since P(z) is continuous and is
positive for i close to - 1 and negative for large i, there must be a root > - 1 .
However, P(0) = Z) a, and lim̂w™ Pii) = ao < 0. Hence if X ay is positive
the root is greater than zero, and if X) ay is negative the root is less than zero.
The proof for positive ao is analogous.

Theorem IIA^ The present value function of a project which is a pure invest-
ment for all i > — 1 is a strictly decreasing function for i > — 1.

Proof: The function is a polynomial in v, hence is a continuous function of i.
The proof is by induction. From (4)

dSoii)/di = 0; dSi/di = id/di){il + i)Soii) + a^}

= Soii) + (1 + i)dSoii)/di

which is negative, since, by assumption, Soii) is negative and dSoii)/di is
zero.

Now suppose that dSj/di < 0, then

dSi+i/di = Sjii) + (1 + i)dS,ii)/di < 0

since the first term is either zero or negative and the second term is negative.
Consequently, by induction, dSnii)/di < 0 and Snii) is strictly monotoni-

cally decreasing. By (3) Pii) is strictly monotonically decreasing.

« The conditions of Theorem IIA are met only when ao , a, , .. • a^-i are all SO. The
general case is that of Corollary IID.
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Corollary IIB. The present value function of a pure financing project is a
strictly increasing function for i > — 1.

Corollary IIC, [3]. The equation P(z) = 0 has a single unique solution for
i > —1 for pure investment and pure financing projects. The solution is negative
if X ay has the same sign as ao, positive if X ay has a different sign from ao
and zero if X ay is zero.

Proof: The proof is analogous to that of Corollary IC.
Corollary IID. If a project is a pure investment project for some interest

rate imin > - 1 then Pii) is a strictly decreasing function of i for i > imin .
Proof: The proof is the same as for Theorem IIA.
Corollary HE.
Any project in which ao is negative is a pure investment project for some Zmin .
Theorems III and IV state results for a present value as a function of two

interest rates x and y iork and r ) .
Theorem III. The future value function Fix, y) of a mixed project, defined by

(5), has the following properties f o r O < x < 'x>, 0 <y < <».
1. Fix, 2/) is a polynomial in x, y. The degree depends on ix, y).
2. (a) If ao < 0, there exists a y^i^ such that Fix, y) for y > y^in is of zero

degree in x.
The region 0 < y < 2/min , x > 0 is termed the mixed region
The region /̂min ^ y < oo , a ;>Ois termed the pure investment region

(b) If ao > 0, there exists an Xmin such that Fix, y) for x > Xn>in is of zero
degree in y.

The region y > 0, 0 < x < Xmin is termed the mixed region
The region y > 0, XnUn ^ x < «> is termed the pure financing

region
3. Fix, y) is a continuous function of (x, y).
4. The partial derivatives dF/dx, dF/dy, exist at all points in the mixed re-

gion except for the points at which one or more project balances are zero.
Proof:
1. The function Fix, y)
Carrying out the recursions (5) for a given project produces a polynomial in

X and y of the form

Fix, y) = Fnix, y) = a t ^ V + aix""?/^' + • • • an_jx""-^/"-' + a»

The degrees of the polynomial in x and y at the point (x, y) are the exponents
ao, /3o. In the sequence of values Fo, Fi, • • • Fn-i calculated by the recursive
process (5), ao is the number of positive values and ;So is the number of negative
values. Similarly, ai is the number of positive values, and /3i the number of nega-
tive values, in the sequence F i , F2, • • • Fn-i ; «2 and ft are numbers of the same
kind for the sequence F2, F3, • • • Fn-i, and so on. If Fn_i is positive, «„_, - 1
and |3n_i = 0; if it is negative, an-i = 0 and fin-i = 1 .

Thus, at any point (x, y). Fix, y) is represented by a polynomial in x and y
whose coeflicients are the numbers ao • • • a™ and whose exponents are deter-
mined by the signs of the project balances Fo, Fi, • • • Fn-i . At any point (x, y)
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where none of the project balances is zero, the following equations hold:

oij + 0j = n — j j = 0,1, ••• n — 1

At a point (x, y), where one or more of the project balances is zero, ao -|- /3o
wiU be less than n by the number of zero project balances, and the other sums,
Ui + fii will similarly be decreased by the number of zeros in the corresponding
subsequences F,, F,+i, . . . Fn-i.

From the continuity of polynomials, it follows that any point at which

ao + /3o = n

is surrounded by a neighborhood of points at which ao + /3o = n and we can
asssert that

Any point (xo, 2/0), at which none of the F^, Fi, • • • F^-i is zero, is surrounded
by a neighborhood of points throughout which Fix, y) is represented by the same
polynomial as it is at (xo, 2/0).

2. Pure and Mixed Regions.
If ao is positive, it is evident that, for large enough values of x, all of the project

balances will be positive. There exists, therefore, a smallest value of x, say Xmin ,
which makes at least one of the partial evaluations zero and all the others posi-
tive. For values of x greater than or equal to Xmin , Fix, y) is a function of x
only. Typical contour lines of the function Fix, y) for ao > 0 are shown in Figure
l(a).

For X ̂  Xmin the contour lines of the function Fix, y) are parallel to the y
axis.

Similarly, if a^ is negative, there exists a smallest value of y, say z/min , such
that, for values of y greater than or equal to j/min, Fix, y) is a function of y

F I G U R E I (o)

CONTOUR LINES OF F(x,y) = c

Co < C, < Cj < Cj < C4

!

X

1
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F(x.y)

F(x.y)
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only. Typical contour lines are shown in Figure l(b). For y ^ ?/miii the contour
lines are straight lines parallel to the x axis.

The region in the positive x, y quadrant in which Fix, y) is a function of x
and y is defined to be the mixed region.

3. Continuity of Fix, y)
The continuity of F(x, y), computed by the recursion relation (5), can be

established by induction. iPo(x, ?/) is a continuous (in fact, constant) function of
X and y. If Py_i(x, y) is a continuous function of x and y then clearly Fjix, y)
is also a continuous function of x and y at all except possibly at points at which
Fj-iix, y) = 0. However, the limit at any such point through any sequence of
points is ay, hence the function is also continuous at these points. Therefore Fj
is continuous for all points if Fj-i is, and by induction Fnix, y) = Fix, y) is
continuous.

4. Partial Derivatives
By assumption there is at least one Fjix, y) which is positive for (x, y) in

the mixed region; let P™ be the first one. Then Fe, Fi, ••• F^-i are negative
and do not depend on x. Therefore

dFo/dx = dFi/dx = . . . = dFJdx = 0

However

dFn,+,/dx = i^/^x){xFr^ix, y) + aj]

= F^ix, y) + xidFmix, y)/dx)

Hence

is positive since it is the sum of a positive and zero term.
Now suppose

dFj/dx > 0 and consider dFj+^/d^ . j ^ m + 1.

From (5)

dFj+i/dx = yidFj/dx)i>0 because dFj/dx > 0 by assumption) if Fj < 0

= Fj + xidFj/dx)i>0 since both terms are >O) if Fj > 0

does not exist if ^y = 0

The partial derivative dFj+i/dx is positive if it exists and consequently, if the
succeeding partial derivatives exist, dFJdx = dFix, y)/dx is positive.

An exactly analogous proof shows that if all the partial derivatives dFj/dy
exist, then dFn/dx = dFix, y)/dy exists and is negative. Neither partial deriva-
tive dF/dx, dF/dy will exist at a point x, y at which one of the Fj is zero.

At the points where the partial derivatives do not exist, the right-hand and
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left-hand derivatives are not equal, because the degree of the polynomial changes
at points where an Fj = 0. However, both derivatives are of the same sign and
any line x = c or y = c, i.e., any line parallel to either axis, contains only a finite
number of such points.

Theorem IV. The function y = yix), implicitly defined in the mixed region by

Fix, y) =0

is continuous and strictly increasing for

XL < X < Xfl

where XL and XR depend on ao and an as follows:

a™ < 0

an > 0

ao

XL>0;

XL = 0;

< 0

XR =

XR =

00

00

F(xn,ir,.y

XL > 0;

XL = 0;

) > 0

XR =

XR =

ao

3^min

> 0

F(x

y is

not

min.y) < 0

not a function

possible

of X

Proof: The continuity of yix) follows directly from the continuity of F(x, y)
given above. Furthermore, if a function Fix, y) is continuous and possesses
partial derivatives in a region, the derivative dy/dx of the function yix) defined
implicitly by Fix, ?/) = 0 is given by

dx I dy

From Theorem III it follows that dy/dx exists and is positive for all x, y in the
mixed region except at points for which one or more of the project balances are
zero. Hence the function yi^x) is strictly increasing in some interval.

The x-interval over which yix) is defined depends on ao and a™ , because
P(0, 0), the value at the origin, is a™ and the sign of ao determines whether

Fix, y) has a pure financing or a pure investing region.
If ao is negative then the project becomes a pure investment project for y >

ymir, (Fig. lb). Hence XL will be zero if a« is positive and will be greater than
zero if a, is negative since Fix, 0) is strictly increasing in x and XL is the root
of Fix, 0) = 0. Since, in a mixed region, dy/dx > 0, yix) is asymptotic to the
horizontal straight line y = F(x, 2/mio) as x becomes large.

If ao is positive, then the project becomes a pure financing project for x > Xmin
(Fig. la). If F(xmin , y) is zero or negative, F(x, y) = 0 is a straight line paraUel
to the y-axis and y is not defined as a function of x. If Fix^i^ , y) is positive and
an is negative, then XL is between zero and Xmin . If a™ is positive, XL is zero. The
function yix) is asymptotic to the vertical straight line x = Fixrai^ , y) as
X approaches Xmin .
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Corollary IVA. Similar properties hold for the function yix; c) defined im-
plicitly by Fix, y) = c.

Proof: Fix, y) = c may be written in the form

Fix, y) -c = 0

The function to the left of the equal sign differs from Fix, y) only in the coeffi-
cient an . The functions yix; c) are asymptotic to ?/ = Fix, y^in) if ao < 0
and Fix, ymin) < c and are asymptotic to x = F(Xmin , ?/) if ao > 0 and
i ' ' ( X m i n , y ) > C.

Corollary IVB. Results analogous to those in Theorem IV and Corollary IVA
hold for X = xiy) defined implicitly by

Fix, 2/) = 0

Theorem V. For any project Pii) defined by (1) and yix) defined by Theo-
rem IV:

Pii) > 0 if yix) > X

Pii) = 0 if yix) = X

Pii) < 0 if yix) < X

Proof: Let

X = 1 + i

Then the Present Value P(f) is given as a function of x by

P ( x ) = ao + a i / x + a i / x ' + ••• an/x"

Multiplying both sides by x" gives

x"P(x) = aox" -F aix""' + • • • a, = Fix, x)

F(x, x) is merely the function Fix,y) evaluated for points along the line y =
X. For positive x, it will obviously be negative where P(x) is negative, zero
where P(x) is zero, and positive where P(x) is positive.

Summary
There are two widely discussed methods for making decisions about the ac-

ceptance or rejection of projects on the basis of the discounted cash fiows. The
internal rate of return method accepts a project only if the solution of P(z) = 0
(equation 1) is greater than some stated rate io. The present value method
accepts the project only if PHo) is positive. The internal rate of return method
cannot be used if the equation PH) = 0 has more than one solution. The pres-
ent value method can always be applied but in some projects Pii) increases as
i increases. This is contrary to intuition and the reason why it occurs is not
readily apparent.

From the analysis in this paper it is now clear that the difficulties with both
methods arise in the mixed region. If at compounding rates (x, y) a project
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falls in the mixed region, then forcing it into the form of P(i) in (1) is equivalent
to considering only points on the line x = y = 1 + i. In the mixed region a
project is sometimes an investment and sometimes a source of funds, and hence
the analysis based on Pii) is equivalent to assuming that the rate the firm imputes
to ike project when it is a source of funds is the same rate as the rate the project earns
when there is an investment. Theorem IV states that for any project, the rate of
return which a project can earn iy — 1) will increase as the rate (x — 1) im-
puted or credited to the project increases. Theorem V verifies that Pii) is in
fact equivalent to F(x, y) for the special case where x = y = 1 -{- i.

A detailed examination of the implications of these results for capital budget-
ing theory is given in [4]. It is shown that increasing the present value of the
firm requires the use of rules which may be stated as:

accept project if yiu) > u or u > X(M)

where yix) and xiy) are the functions implicitly defined by Fix, 2/) = 0 and
M = 1 + io. Since io (often referred to as the cost of capital) is assumed given,
mixed projects may be considered either as financing projects [x(«)] or as in-
vestment projects [yiu)]. In either case the decision is the same. This rule is
exactly equivalent to the discounted present value rule if the traditional present
value function Pii) is used.
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